a4+a7+a11=9,a8+a11+a15=27 ,则a16+a19+a23=27*3=81,
解析:把a4+a7+a11,a8+a11+a15,a16+a19+a23可以看做是等比数列a1,a2,a3,故根据等比数列性质可知。
a4+a7+a11=9,
a7(1/q^3+1+q^4)=9
a8+a11+a15=27
a11(1/q^3+1+q^4)=27
相除得a11/a7=3,即q^4=3
所以
a16+a19+a23
=a19*(1/q^3+1+q^4)
=a11*q^8*(1/q^3+1+q^4)
=a11*(1/q^3+1+q^4)*q^8
=27*3^2
=243